
DOI 10.1007/s10898-006-9010-7
Journal of Global Optimization (2006) 36: 307–318 © Springer 2006

Stability Index Method for Global Minimization

JAMES DOVER and SEMION GUTMAN∗
Department of Mathematics, University of Oklahoma, Norman, OK 73019, USA
(e-mail: sgutman@ou.edu)

(Received May 20 2005; accepted in revised form 13 February 2006; Published online 14
June 2006)

Abstract. The Stability Index Method (SIM) combines stochastic and deterministic
algorithms to find global minima of multidimensional functions. The functions may be non-
smooth and may have multiple local minima. The method examines the change of the diam-
eters of the minimizing sets for its stopping criterion. At first, the algorithm uses the uniform
random distribution in the admissible set. Then normal random distributions of decreasing
variation are used to focus on probable global minimizers. To test the method, it is applied
to seven standard test functions of several variables. The computational results show that the
SIM is efficient, reliable and robust.
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1. Introduction

Given a function f : A → R, our goal is to minimize it over an admissi-
ble set A assumed to be a bounded set in a metric space X. Typically, the
structure of the objective function f is quite complicated. In particular, it
can have many local minima and a non unique global minimum. To bet-
ter understand the structure of the minima, let us introduce the minimizing
sets Sε of f . Let m= inf{f (x) :x ∈A}. Given an ε >0 define

Sε ={x ∈A: f (x)<m+ ε} (1.1)

or

Sε ={x ∈A: f (x)<f (xp)+ ε}, (1.2)

if the problem admits a global minimizer xp ∈A.

DEFINITION. Given an ε > 0, let Dε be the diameter of the minimizing
set Sε , which we call the Stability Index Dε of the minimization problem
(1.1).

∗The authors thank the referees for valuable suggestions.
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We are interested in the behavior of Dε as ε → 0. So, one can properly
say that the problem (1.1) possesses a set of Stability Indices {Dε : ε > 0},
and the above definition should be understood in this sense.

One would expect to obtain a stable identification for minimization
problems with small (relative to the admissible set) stability indices. Min-
imization problems with large stability indices either have distinct global
minimizers, or the function f is nearly flat in a neighborhood of the
global minimizer xp. In this situation, and with no additional informa-
tion known, one has an uncertainty of the minimizer’s choice. The stability
index provides a quantitative measure of this uncertainty or instability of
the minimization.

In a practical minimization problem one constructs a sequence of min-
imizers {x1, x2, . . . } ⊂ A, and makes a decision when to terminate the iter-
ations according to a stopping criterion. We assert that the knowledge of
the Stability Index provides a valuable tool for the formulation of such a
stopping criterion.

In this paper we choose to present a particular implementation of the
Stability Index Method (SIM). Its numerical performance on a variety of
standard test functions found in the literature is described in the Numerical
Results section. The algorithm shows how to iteratively estimate the Stabil-
ity Indices Dε , and how to use them in a stopping criterion. Clearly, one
can combine this idea with other minimization methods to obtain different
implementations.

Originally, we applied the Stability Index minimization method to inverse
scattering problems arising in quantum mechanical scattering (Gutman
et al., 2002). Such potential scattering problems are important in quan-
tum mechanics, where they appear in the context of scattering of parti-
cles bombarding an atom nucleus. One is interested in reconstructing the
scattering potential from the results of a scattering experiment. Assuming
a particular structure of the potential, the scattering results can be com-
puted and compared to the given scattering data. Thus the inverse scat-
tering problem is reduced to the minimization of the discrepancy (best
fit to data) (see Gutman et al., 2002; Ramm and Gutman, 2005 for
details).

2. Stability Index Method

The goal of the SIM algorithm is to find a minimizing set Sε that fits
within a small portion of the computational domain A⊂R

N . Practically, we
assume that A= [−M,M]N ⊂R

N , for an M >0. If it is desirable to introduce
different scales for the variables, then the algorithm should be modified
accordingly.
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Let 0<δ <1. The minimization is stable if, given a global minimizer xp,
we are able to find a minimizing set Sε ⊂C[xp, δ], where C[xp, δ] is the cube
centered at xp ∈A with the side equal to 2δM.

The next step is to define a sequence of normal distributions Tn with the
variances µn → 0, as n → ∞. Thus we fix an 0 < α < 1, and let µn = αn,

n=1,2, . . .

Initially, for n = 0, let the T0 be the uniform random distribution in
A. A special algorithm SMS, described below, determines a finite Stable
Minimizing Set (SMS) S0 ⊂A. Let x0 ∈S0 be the minimizer in S0, that is

f (x0)=min{f (x) :x ∈S0} . (2.1)

If S0 ⊂ C[x0, δ], then the minimization is stable and the global minimizer
xp =x0.

If, on the other hand, the above inclusion is not achieved, then one con-
tinues with another application of the SMS, this time using the normal
distribution T1 with the mean at x0, and the variance µ1, etc. The itera-
tions continue until either Sn ⊂ C[xn, δ] or 3µn < 2δM. The last condition
is needed to prevent all the trial points to be chosen too close to xn, thus
preventing a reasonable estimate for the diameter of Sn.

Stability Index Method (SIM)
Fix 0<α, δ <1. Suppose that A= [−M,M]N .

(1) Initialization. Let n = 0. Use the SMS algorithm with the uniform
random distribution T0 in A to determine the minimizing set S0 ⊂A

and the minimizer x0 ∈ S0. Go to the Stopping Criterion (step 3) to
check if additional iterations are needed.

(2) (nth iteration). Let µn =αn. Use the SMS algorithm with the normal
random distribution Tn with the mean at xn−1 and the variance µn to
determine the minimizing set Sn ⊂A and the minimizer xn ∈Sn.

(3) Stopping criterion. Let C[xn, δ] be the cube centered at xn ∈ A with
the side equal to 2δM.

If Sn ⊂ C[xn, δ], then stop. The minimization is stable. The esti-
mated global minimizer xp is xn.

If Sn �⊂ C[xn, δ] and 3µn < 2δM, then stop. The minimization is
unstable. The diameter (Stability Index) Dn of Sn is a measure of the
instability of the minimization.

Otherwise, increase n by 1, and return to Step 2 to do another iteration.

Note that the obtained point xp is an estimated global minimizer. See
Section 5 for a convergence analysis of the method. A somewhat differ-
ent implementation of the SIM is described in Gutman et al. (2002) and
Ramm and Gutman (2005). The version of the SIM presented in this paper
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is more efficient due to a smaller number of local minimizations, fewer
number of parameters, and other improvements.

3. Stable Minimizing Set (SMS) algorithm

The main part of the SIM is the SMS algorithm, which determines stable
minimizing sets Sn, corresponding to the random distributions Tn. These
distributions are either uniform in A or normal with a given variation µn.

The SMS algorithm is, in itself, an iterative algorithm. It can be classi-
fied as an Iterative Reduced Random Search method. Choose an integer
K >0 from the consideration that K random points in Sε are sufficient to
estimate its diameter Dε . If n�1, then the calling algorithm SIM provides
the minimizing set Sn−1, its minimizer xn−1, and the variance µn.

Let a batch H 1 ⊂A of L>K trial points be generated in the admissible
set A according to the random distribution Tn. If n=0, then T0 is just the
uniform random distribution in A. If n � 1, then Tn is the normal distri-
bution with the variance µn, and the mean at xn−1. Let Q1

U be the subset
of K points from H 1 where the objective function f attains its K smallest
values. That is

max{f (ui) :ui ∈Q1
U }�min{f (ui) :ui �∈Q1

U }. (3.1)

Use each point ui ∈ Q1
U as the initial guess for a Local Minimization

Method (LMM) of your choice, e.g. the conjugate gradient method, etc.
The specific LMM used by us is described in the next section. While the
use of a local minimization is not, strictly speaking, necessary for the SIM,
it provides a significant improvement in the performance of the algorithm,
and is highly recommended. Thus for each starting point ui ∈Q1

U the LMM
produces a minimizer vi ∈A. Let Q1

V be the set of all such minimizers. Let
Q1 be the subset of Q1

U ∪Q1
V containing K points with the smallest values

of f , and q1 be the minimizer in Q1. Define the radius of Q1 by

R(1) =max{‖zi −q1‖ : zi ∈Q1, i =1,2, . . . ,K}. (3.2)

The idea of the SIM is to iteratively construct subsets Qj until their
diameters are stabilized. Practically, one can achieve the same goal by esti-
mating and examining the radius R(j) of the sets Qj . This also requires less
computational effort.

To construct the next set Q2 generate another batch H 2 ⊂ A of L trial
points according to the uniform random distribution, if n= 0, or, for n� 1,
according to the normal distribution Tn with the variance µn, and the mean
at q1. Let Q2

U be the subset of K points from H 2 ∪ Q1 having the small-
est K values of f . Apply the LMM to produce the set of minimizers Q2

V .
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Of course, if some point ui ∈Q2
U has already been used as an initial guess for

the LMM in the previous iteration, it is excluded from the LMM applica-
tion. Let Q2 be the subset of Q2

U ∪Q2
V containing K points with the small-

est values of f . Let q2 be the minimizer in Q2, and R(2) = max{‖zi − q2‖ :
zi ∈Q2, i =1,2, . . . ,K} be its radius, etc.

This way one produces a sequence of the minimizing sets Qj, j =
1,2, . . . . Let 0 <γ < 1, and P be a positive integer. The iterations are ter-
minated if the maximum number of iterations Nmax is exceeded or the fol-
lowing Stopping Criterion is satisfied:

∣
∣
∣
∣
∣
∣

R(j) − 1
P

j
∑

i=j−P+1

R(i)

∣
∣
∣
∣
∣
∣

<2γM . (3.3)

In either case, when the last iteration j is determined from (3.3) or
j =Nmax, we let Sn =Qj and xn =qj .

Stable Minimizing Set (SMS) algorithm
Fix 0 < γ < 1, and integer K,L > K,P,Nmax. Constant M, normal ran-

dom distribution Tn, its variance µn (for n � 1), the minimizing set Sn−1,
and the minimizer xn−1 are supplied by the calling algorithm SIM.

(1) Initialization. Let j =1.
• For n=0. Generate a batch H 1 of L trial points in A⊂R

N using
the uniform random distribution. Let Q1

U be the subset of K

points from H 1 where the objective function f attains its K small-
est values. Go to step 4.

• For n�1. Generate a batch H 1 of L trial points in A⊂R
N using

the normal distribution Tn with the variance µn and the mean at
xn−1. Let Q1

U be the subset of K points from H 1 ∪Sn−1 where the
objective function f attains its K smallest values. Go to step 4.

(2) Iterative step (j �2).
• For n=0. Generate a batch Hj of L trial points in A⊂R

N using
the uniform random distribution.

• For n�1. Generate a batch Hj of L trial points in A⊂R
N using

the normal distribution Tn with the variance µn and the mean at
qj−1.

(3) Let Q
j

U be the subset of K points from Hj ∪Qj−1, where the objec-
tive function f attains its K smallest values.

(4) Local minimization. Use each unflagged point ui ∈Q
j

U as the initial
guess for a Local Minimization Method (LMM). Let vi ∈ A be the
resulting minimizer. Let Q

j

V be the set of all such minimizers result-
ing from the application of LMM to Q

j

U . Flag all points in Q
j

U and
Q

j

V .
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(5) Let Qj be the subset of Q
j

U ∪Q
j

V containing K points with the small-
est values of f and qj be the minimizer in Qj . Define the radius of
Qj by

R(j) =max{‖zi −qj‖ : zi ∈Q1, i =1,2, . . . ,K}.

(6) Stopping criterion.
• If j <P , increase j by 1 and return to step 2 for another iteration.
• If j �P , compute the average radius during the last P iterations:

Ra = 1
P

j
∑

i=j−P+1

R(i).

• Termination. If |R(j) −Ra|�2γM, or j �Nmax, let Sn =Qj, xn =qj

and exit the procedure.
• Otherwise, increase j by 1 and return to step 2 for another itera-

tion.

The implementation of the SMS involves a combination of stochastic
(global) and deterministic (local) minimization methods. Such hybrid pro-
cedures are becoming increasingly popular (Ramm and Gutman, 2005;
Yiu et al., 2004). Generally, local searches offer more precision and speed
than their global counterparts, so that adding a local step to a global
minimization algorithm should yield improvement in both areas. Likewise,
by itself, a LMM will very often produce points of considerable distance
from the actual global minimizer, that is it would be trapped in one of
many local minima of the objective function f . Adding a global step helps
the algorithm escape from local minima, and explore the entire admis-
sible set A. The use of various normal distributions of decreasing vari-
ance is similar to ideas of the simulated annealing method (Kirkpatrick,
1984).

4. Local Minimization Method (LMM)

The particular LMM used in the numerical experiments was a modification
of Powell’s minimization method in R

N (Brent, 1973). It was chosen with
applications in mind, for which the objective function f does not have a
convenient expression for its gradient. Either a Golden Search or Brent’s
method can be used for one-dimensional minimizations (Miller, 2000; Press
et al., 1992).
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Modified Powell’s Method

(1) Choose the set of directions ui , i = 1,2, . . . ,N to be the standard
basis in R

N

ui = (0,0, . . . ,1, . . . ,0) ,

where 1 is in the ith place.
(2) Save the starting point p0.
(3) For i =1, . . . ,N move from pi−1 along the direction ui and find the

point of minimum pi .
(4) Set v =pN −p0.
(5) Move from p0 along the direction v and find the minimum. Call it

p0 again. It replaces p0 from step 2.
(6) Repeat the above steps until a stopping criterion is satisfied. The

resulting point is pmin.

Note that f (pmin) � f (p0) for any objective function f used in the
LMM.

5. Convergence Analysis

In this section we prove some results on the properties of the SIM algo-
rithm, and the minimizing sets Sε .

THEOREM 5.1 Let f : A→R be the objective function, and {xn, n=0,1, . . . }
be the sequence of minimizers produced by the SIM algorithm. Then

f (xn+1)�f (xn) (5.1)

for n=0,1, . . .

Proof According to the SIM algorithm, the sequence of minimizers
xn, n = 0,1, . . . is produced by a repeated application of the SMS proce-
dure. Since the analysis of the SMS when n=0 is basically the same as for
n � 1, we only consider the later case. Among the input data supplied by
the SIM to SMS are the normal random distribution Tn, its variance µn,
the minimizing set Sn−1, and the minimizer xn−1.

To simplify the notation we will write

min f (Q)=min{f (x) : x ∈Q}.

By construction, if j = 1 we have min f (Q1
U) � min f (H 1 ∪ Sn−1) �

f (xn−1) = min f (Sn−1). Furthermore, min f (Q1
V ) � min f (Q1

U) since the
LMM does not increase the value of the objective function f . Finally in
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this step, the set Q1 is chosen to contain the minimizer of Q1
U ∪Q1

V . Thus
f (q1)=min f (Q1)�f (xn−1).

Arguing similarly, for j > 1 we have min f (Q
j

U) � min f (Hj ∪ Qj−1) �
f (qj−1) = min f (Qj−1). Next min f (Q

j

V ) � min f (Q
j

U) and f (qj ) =
min f (Qj). Thus f (qj )�f (qj−1).

When the SMS procedure is terminated it assigns xn = qj . Therefore
f (xn)�f (xn−1) and the proof is completed.

Recall that the minimizing sets Sε were defined in (1.2). From the defi-
nition Sµ ⊂ Sν for ν �µ. Next theorem shows that for a continuous func-
tion with a unique minimizer xp one can always find a minimizing set with
an arbitrarily small diameter. Thus, in principle, the SIM can estimate the
global minimizer with arbitrary precision as long as it is able to approxi-
mate the minimizing sets Sε .

THEOREM 5.2 Suppose that f :A→R is a continuous function on a com-
pact set A in a normed space, and xp ∈ A is its unique global minimizer.
Then for any δ >0 there exists ε >0 such that diam Sε <δ.

Proof. Let

Gn =S1/n =
{

x ∈A: f (xp)�f (x)<f (xp)+ 1
n

}

, n=1,2,3 . . . (5.2)

Then

xp =
∞
⋂

n=1

Gn, (5.3)

since xp ∈ Gn for any n, and the global minimizer xp is assumed to be
unique.

Suppose that the conclusion of the theorem is not valid. Then there
exists δ > 0 such that for any positive integer n one can find zn ∈Gn such
that ‖zn − xp‖ � δ. Since the set A is compact one can find a convergent
subsequence in {zn}⊂A. Let its limit point be zp ∈A. Then f (zp)=f (xp)

from the continuity of f , and ‖zp −xp‖�δ, but this is impossible since the
minimizer xp is unique.

Clearly, when the parameters in any minimization method are fixed, one
can design a function for which the method fails. On the other hand, sup-
pose that it is known that the objective function f is Lipschitz continuous
with |f (x) − f (y)| � γ |x − y|, γ > 0. Let H ⊂ A ⊂ R

N be a rectangular lat-
tice in which the closest points are separated by the distance h<ε/γ for an
ε >0. Then H ∩Sε �=∅. This implies an estimate on the lattice size |H | that
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assures the value of the global minimum f (xp) is being determined within
the ε accuracy. Practically, this gives very large sample sizes and it is not
suitable for computations.

6. Numerical Results

The SIM described in the previous sections was tested on seven functions
designed to test and compare various minimization algorithms. The exper-
iments were conducted on a 2.8 GHz PC with 256 MB RAM.

In all the numerical experiments we used the same parameter values: α=
0.8, δ = 0.001, γ = 0.001,K = 30,L = 5000, P = 6, and Nmax = 30. For each
test function the admissible set A is a cube [−M,M]N provided in the func-
tion’s description together with its global minimizer.
Test Function 1

f (x, y)=
(

5
∑

i=1

i cos[(i +1)x + i]

)(
5
∑

i=1

i cos[(i +1)y + i]

)

+0.5((x +1.4213)2 + (y +0.80032)2).

The minimum is sought on [−5,5] × [−5,5]. This function has a global
minimum at (−1.42513,−0.80032) with a function value of −186.73091
(Yiu et al., 2004).
Test Function 2

f (x, y)= esin(50x) + sin(60ey)+ sin(70 sin x)+ sin(sin(80y))

− sin(10(x +y))+ (x2 +y2)/4.

The minimum is sought on [−1,1]2. According to Bornemann et al.
(2004), the minimum occurs at approximately (−0.0244031,0.2106124) with
a function value of −3.30686865.
Test Function 3

f (x)= π

N

(

10 sin2
(πy1)+

N−1
∑

i=1

(yi −1)2(1+10 sin2
(πyi +1))+ (yN −1)2

)

,

where x = (x1, x2, . . . , xN) ∈ R
N, yi = 1 + 0.25(xi − 1), i = 1,2, . . . ,N . The

minimum is sought on [−10,10]N . This function has a global minimum at
x = (1,1, . . . ,1) with a function value of 0 (Yiu et al., 2004).
Test Function 4

f (x)=−20 exp



−0.2

√
√
√
√

1
N

N
∑

i=1

|xi |


− exp

(

1
N

N
∑

i=1

cos(2πxi)

)

+20+ e,
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where x = (x1, x2, . . . , xN)∈ R
N, i = 1,2, . . . ,N . The minimum is sought on

[−32.768,32.768]N . This function has a global minimum at x = (0,0, . . . ,0)

with a function value of 0 (Bagirov et al., preprint).
Test Function 5

f (x)= 1
400

N
∑

i=1

|xi |−
N
∏

i=1

cos
(

xi√
i

)

+1,

where x = (x1, x2, . . . , xN) ∈ R
N . The minimum is sought on [−500,500]N .

This function has a global minimum at x = (0,0, . . . ,0) with a function
value of 0 (Bagirov et al., preprint).
Test Function 6

f (x)= π

N

(

10| sin(πy1)|+
N−1
∑

i=1

|yi −1|(1+10| sin(πyi +1)|)+|yN −1|
)

,

where x = (x1, x2, . . . , xN) ∈ R
N, yi = 1 + 0.25(xi − 1), i = 1,2, . . . ,N . The

minimum is sought on [−10,10]N . This function has a global minimum at
x = (1,1, . . . ,1) with a function value of 0 (Yiu et al., 2004).
Test Function 7

f (x, y, z)= esin(50x) + sin(60ey) sin(60z)+ sin(70 sin x) cos(10z)

+ sin(sin(80y))− sin(10(x +y))+ (x2 +y2 + z2)/4.

The minimum is sought on [−0.5,0.5]3 According to Bornemann et al.
(2004), the minimum occurs at approximately (−0.15804,0.29102,−0.28930)

with a function value of −3.32834.
The results of the minimization using the SIM for all seven test functions

are shown in Table 1. The algorithm was run 20 times on each function. It
found the correct global minimum most of the time. The “success rate” col-
umn in Table 1 shows the percentage of trials in which the global minimum
was found exactly. The “Function evaluation” column shows the average
number of times the objective function was evaluated. Finally, Table 1
shows the average run time, in seconds, for a single trial run.

The table shows that in every trial run for function no. 4 the minimum
value was found within 0.004 of the actual minimum of 0.00000. In all trial
runs for function no. 7 the minimum values were less than −3.3205, and
the actual minimum of −3.3283 was found in 85% of the runs. The per-
formance of the method deteriorates for higher dimensional problems.
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Table 1. Results of the computational experiments

Function Dimension Actual Found Success Function Average run
N minimum minimum rate (%) evaluation time (seconds)

1 2 −186.731 −186.731 100 341454 2
2 2 −3.30687 −3.30687 100 384937 2
3 5 0.00000 0.00000 100 1029801 7
3 10 0.00000 0.00000 100 2423475 16
3 20 0.00000 0.00000 100 4194304 50
4 2 0.00000 <0.00362 100 508266 2
4 3 0.00000 <0.00345 100 1005597 4
5 2 0.00000 0.00000 100 1169491 4
6 5 0.00000 0.00000 100 1517361 8
6 10 0.00000 0.00000 95 2765348 19
6 20 0.00000 0.10003 0 4088200 45
7 3 −3.32834 −3.32834 85 655776 4

7. Conclusions

The SIM is a robust and efficient algorithm for global minimization. Its
efficiency comes from a combined use of global and local minimization.
The global (stochastic) part employs uniform and normal random distri-
butions. It can be combined with local (deterministic) methods appropriate
for the objective function. The diameters of the minimizing sets (Stability
Index) are used for a self-contained stopping criterion. The computational
experiments show that the method was successful for various standard test
functions over multidimensional domains. No adjustment of parameters
was needed in different tests. The method is well suited for low dimensional
minimization problems. Its performance deteriorates for higher dimensional
problems. The SIM is a valuable addition to already existing global mini-
mization methods.
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